Otras publicaciones:

9789877230284-frontcover

9789877230390-frontcover

Otras publicaciones:

Book cover

Book cover

5.1.1. Del ser al aparecer en un mundo

De la ontología a la lógica

Luego de la utilización de la teoría de conjuntos de la matemática en la ontología de EE, ya desde los inicios de los noventa Badiou se dedicó a examinar otra rama de la matemática conocida como “teoría de categorías” y a distinguirla del dominio de la teoría de conjuntos en escritos que circularon entre sus alumnos, pero no fueron publicados. Como reconoce el propio Badiou, Jean-Toussaint Desanti, filósofo de las matemáticas, fue el primero que en una reseña sobre EE le hizo notar la importancia de esta teoría en las que las relaciones priman por sobre las entidades[1]. En esa dirección, en una entrevista de 1994, confiesa haber repensado cuáles son aquellas novedades de la matemática que condicionan a su filosofía: “algo más sería necesario para estar en la fractura; eso sería la teoría de las categorías, lo cual me ha llevado a más desarrollos sistemáticos que espero escribir algún día como secuela de El ser y el acontecimiento” (E1994: 16).

Como señala Madarasz (2011: 142-147), los frutos parciales de esta labor fueron publicados por primera vez en 1998 en el libro Court traité d’ontologie transitoire (en adelante, TOT), el cual dejaba en claro desde su título que se concebía como un work in progress[2]. Este libro examina la historia del pensamiento ontológico a través de distintos filósofos (Platón, Aristóteles, Spinoza, Heidegger, Deleuze), así como las relaciones de la filosofía con la matemática y la lógica.

Por un lado, Badiou explora las implicancias en el campo de la filosofía de la matematización de la lógica, es decir, la tesis según la cual hay una identificación formal de la lógica con la matemática, y la vincula con el “giro lingüístico” de la filosofía contemporánea que reduce el tema de la verdad al discurso. Este giro que circunscribe el pensamiento a lo decible se aprecia en autores tan disímiles como Wittgenstein y Heidegger, y presenta según Badiou dos rasgos articulados: la identificación de la matemática con la lógica desde una concepción que reduce su estatuto al de una técnica, y el recurso archiestético a la potencia del poema como fuente de pensamiento (TOT: 105).

Por lo tanto, el sostenimiento del proyecto filosófico badiouano de reformular el concepto de verdad sin someterlo al puro relativismo de los juegos del lenguaje requiere romper con esta disposición. Además de reexaminar críticamente la relación de sutura de la filosofía a la poesía (cuestión ya abordada en esta Tesis), hace falta entonces pensar una forma de disociación de la matemática de la lógica que restituya la dimensión pensante de la primera, más exactamente, de la matemática como ciencia del ser.

Realizar este gesto implica que la filosofía acepte, tal como lo hizo el “giro lingüístico”, que la matematización de la lógica es un acontecimiento del pensamiento que se impone y la condiciona. Por ende, el desafío es desarrollar una concepción filosóficamente novedosa de la relación entre la matemática y la lógica sin dejar de asumir que la lógica está matematizada.

La matematización de la lógica contemporánea puede verse como un reto para la tradición filosófica occidental que consideraba que la lógica “era aquello a partir de lo cual […] se enseñoreaba del lenguaje”; puesto que esa idea se ha invertido y es el lenguaje el que parece poder adueñarse de la filosofía (TOT: 106). Para que la filosofía pueda desprenderse de ese pretendido dominio, señala Badiou, debe colocarse bajo condición de otro acontecimiento que habilita una nueva forma de distancia interior entre la matemática y la lógica matematizada: la novedosa presentación matemática de la lógica en el marco de la “teoría de categorías”, en cuyo centro se halla el concepto de topos o de universo, y se halla ligada a nombres como los de Mac Lane, Eilenberg, Grothendieck y Lawyere (TOT: 107).

Lo que se propone entonces es una nueva forma de concebir a la lógica con el objetivo principal de que ella no se reduzca a su estatuto gramatical y de ese modo, sea separable del llamado “giro lingüístico”. De acuerdo con Badiou, “si se la emplea, no como norma sintáctica, sino como característica inmanente de los universos posibles, la lógica queda al fin ubicada de nuevo bajo una prescripción ontológica, y no lingüística” (TOT: 161).

Empero, una vez establecida la vinculación de la lógica con la ontología matemática, queda preguntarse cómo se vinculan ambas en la teoría badiouana. La respuesta se halla en el orden del aparecer, dado que a todo ser le incumbe ser un ente singular y manifestarse localmente. Este ámbito del aparecer, a pesar de la equivocidad y aparente desorden que le adjudicaba el platonismo, para Badiou se muestra como cohesionado y relacionado. Asimismo, mientras que Kant destituía la ontología racional a favor de la lógica del aparecer de los fenómenos porque postulaba que el ser en sí permanecía incognoscible, Badiou reafirma, en cambio, que hay una ontología de lo múltiple puro que se despliega matemáticamente (ya expuesta en L’Être et l’Événement) y antecede al orden lógico del aparecer:

La lógica es la ciencia del aparecer como dimensión intrínseca del ser. La matemática, por su parte, es la ciencia del ser en tanto que ser. Debido al hecho de que el aparecer, es decir la relación, es una constricción que afecta al ser, es preciso que la ciencia del aparecer sea a su vez una componente de la ciencia del ser, y por tanto de la matemática. Es preciso que la lógica sea matemática (TOT: 164-165).

En definitiva, en su ontología transitoria Badiou teoriza por primera vez la distinción entre ser y aparecer que culmina con la formulación de la tesis filosófica de que la lógica se encarga de la exposición del ser ahí. Si bien algunas formulaciones difieren (por ejemplo, más adelante formulará la idea de una “retroacción” del aparecer sobre el ser), esta obra sirve de puente entonces hacia lo que será luego su segunda gran obra filosófica una vez iniciada su etapa de madurez[3], Logiques des mondes (en adelante, LM, aparecida en marzo de 2006), en la cual se teoriza y despliega esta tesis fundamental que afirma que, así como el ser en tanto ser es pensado por la matemática, el aparecer es pensado por la lógica (LM: 56).

Entre algunas de las motivaciones de Badiou para desplegar una teoría lógica del aparecer (“algunas”, ya que otras se abordarán a la hora de retomar los conceptos nodales de acontecimiento, sujeto y verdad), él mismo señala, en una entrevista concedida en el 2007, la importancia de responder a los cuestionamientos de sus comentaristas anglosajones (entre los que se destaca el artículo de Peter Hallward, “Generic sovereignty”, publicado en 1998) acerca de que la ontología sólo da cuenta de multiplicidades indiferentes, lo cual simplifica la realidad en tanto impide pensar las formas de relación que se traman entre los entes que componen un mundo (Hallward, 2001: xxxii).

Badiou asume entonces que hace falta pensar no sólo el ser puro de lo múltiple, sino también su existencia mundana y la forma en que se articulan estos regímenes del ser y el aparecer (Badiou, E2012: 284). Una vez determinado en L’être et l’événement que el ser-en-tanto-que-ser es multiplicidad pura, resulta oportuno considerar que esa multiplicidad está ahí, es decir, existe y, dado que el ser es absolutamente homogéneo, este aparecer o ser-ahí no tiene como esencia una forma pura del ser, sino formas de relación. En consecuencia, el pensamiento del aparecer es una lógica en tanto ésta se conciba como una teoría formal de las relaciones. Se puede decir también que se trata de una lógica en el sentido hegeliano de describir la estructura lógica posible de la apariencia, es decir, una fenomenología del ser-ahí.

La teoría del aparecer de Badiou, finalmente, se apropia de la matemática procurando develar la lógica que gobierna y vincula las diferencias de existencias e intensidades en el desorden cualitativo de los mundos. A diferencia de EE, donde la matemática intentaba forzar la consistencia y llegar al punto donde se mostraba la inconsistencia del ser al pensamiento, aquí la matemática se encarga de exponer la consistencia del aparecer (LM: 57)[4].

La Gran Lógica y el concepto de trascendental

En LM, Badiou llama “Gran Lógica” a la teoría que se encarga de pensar el modo en que el ser-múltiple es desplegado en un mundo determinado, es decir, según su aparecer (pensarlo en su ser fue la tarea de EE). En ese sentido, ella es concebida como la parte analítica del libro que se ocupa del estudio de las leyes trascendentales del ser-ahí y que, al definir también los conceptos fundamentales de mundo y objeto, provee la base objetiva que luego permitirá abocarse al fin último de esta gran obra: la compresión del cambio y, principalmente, del cambio real o acontecimiento que posibilita la aparición de verdades y sujetos.

En tanto el aparecer de los entes no es caótico, sino que posee una lógica particular que le brinda cohesión, la Gran Lógica comienza intentando responder a una pregunta clave: ¿cómo es que de la inconsistencia del ser en general, adviene la consistencia del ser ahí? Es decir: ¿por qué hay mundos en lugar de caos?

En ese sentido, Badiou establece, en primer lugar, la cláusula de que el Todo es inconsistente ontológica y lógicamente. La inexistencia de este ente total ya fue demostrada por la ontología matemática desplegada en EE, basada en la teoría de conjuntos. En efecto, el concepto matemático del todo equivaldría a sostener la existencia de “un conjunto de todos los conjuntos”, lo cual resulta en una contradicción, tal como fue probado por la “paradoja de Russell”. Si no hay un ser del Todo, es decir, no hay un múltiple que sea todo, no hay universo, sino mundos en plural.

Dado que no hay Todo, Badiou sostiene que la identificación de un múltiple singular se manifiesta siempre localmente. En principio, este múltiple localizado es lo que se llama un ente y este lugar donde se opera su identificación se denomina mundo (LM: 135). Vale notar que un ente, determinado ontológicamente, puede copertenecer generalmente a mundos diferentes, ya que las operaciones que lo localizan pueden de forma diversa en mundos diversos (por ejemplo, el ente que aparece en más mundos es el animal humano).

La invariancia ontológica del ente se esfuma cuando éste aparece en mundos incomparables entre sí. El ente en su aparecer está sujeto a una lógica que no está contenida ni prescripta en su construcción ontológico-matemática: el ser-ahí del ente no puede ser pensado en base al ser-en-tanto-ser. Al mismo tiempo, este ente también difiere de otros entes del mismo mundo porque no es ontológicamente igual a ellos. En suma, Badiou señala que, a partir de su localización mundana, el ente se da como otro que él mismo y, a la vez, como otro que los otros. La lógica se encarga de integrar y dar consistencia a esta clase de diferenciaciones.

La clave del pensamiento del aparecer, cuando se trata de un ente singular, reside en poder determinar, a la vez, la diferencia-de-sí que impone que el ser-ahí no sea el ser-en-tanto-ser y la diferencia con los otros que impone que el ser-ahí, o ley del mundo, compartida por esos otros, no sea una abolición del ser-en-tanto-ser (LM: 139).

Es decir, la determinación ontológica del ente y la lógica del ser ahí no se anulan entre sí, ni la segunda es una simple codificación de la primera.

Por otro lado, del hecho de que un ente mundanizado difiere de su ser mismo y también de los demás entes, se sigue que estas identidades o diferencias locales se miden en una escala del más al menos, es decir, hay una lógica del aparecer que mide grados de diferencia de un ente en relación consigo mismo y con los otros entes (LM: 140)[5]. Badiou denomina trascendental a esta estructura que instituye grados de identidad y diferencia entre sus entes sin necesidad de que su inteligibilidad dependa de alguna clase de experiencia subjetiva, al contrario de lo que postula el llamado “correlacionismo”: “Es indudable que no hay ninguna necesidad de una conciencia para atestiguar que los entes están constreñidos a aparecer, es decir, a estar ahí, bajo la lógica de un mundo” (LM: 141)[6]. Como ejemplo de ello, Badiou indica que el mundo habitado por los dinosaurios desplegó una gran diversidad de existentes, millones de años antes de que esto pudiese ser pensado por una conciencia o un sujeto.

El trascendental es una estructura local y anónima que rige el aparecer de un ente en un mundo al asignarle un grado variable de identidad y, por tanto, de diferencia en relación con otros entes del mismo mundo: varía entre la identidad casi nula (la diferencia absoluta) y la identidad total (LM: 142). De su carácter local se desprende que hay muchos trascendentales, (cada mundo posee uno propio)[7] y, por consiguiente, no hay un centro unificado de la organización trascendental, a diferencia de lo que sucede en la filosofía kantiana, en la que esa función es cumplida por la categoría de Sujeto.

En resumen, si lo que rige el aparecer de un ente (un múltiple) no es la composición ontológica, sino las evaluaciones relacionales que lo localizan en un mundo, el requisito mínimo de toda localización es que se pueda cuantificar el grado de identidad (o no identidad) entre dos elementos de un mismo mundo. Badiou denomina función de aparecer a esta medición que constituye la primera forma de “indexación trascendental” (llamado así porque estos valores son establecidos por el trascendental) en cada mundo (LM: 180).

A la vez, el trascendental no se agota en la relación de equivalencia que regla la identidad, es una estructura de orden que admite comparaciones y jerarquías. Por eso, se requiere estudiar el tipo de relación que permita ordenar y comparar a los elementos de un mundo que sean insustituibles o no idénticos entre sí. En esa línea, Badiou establece que la relación más básica de la estructura trascendental es la “relación de orden”, la cual se rige por tres axiomas: la antisimetría que asegura el dominio de relaciones entre singularidades irreemplazables, la reflexividad o la relación consigo mismo de cada singularidad, y la transitividad de las relaciones. En suma, para el filósofo francés estos axiomas constituyen lo que podría llamarse la “ontología del trascendental” (LM: 183).

Asimismo, si bien el trascendental es un múltiple como todo lo que es, está dotado de un conjunto de operaciones inmanentes –anteriores a cualquier referencia subjetiva– que son las condiciones locales de posibilidad de la inteligibilidad del ser ahí (LM: 123).

En primer lugar, en la lógica del aparecer se establece que se debe poder pensar en un mundo aquello que no aparece en ese mundo. Si bien ningún mundo (particular) puede ser la localización de todos los entes, caso contrario sería el único mundo, el Universo o el Todo (lo cual contradeciría la primera cláusula ya mencionada), el pensamiento del ser-ahí, distinguible del pensamiento ontológico, incluye la posibilidad de “no-ser-ahí”, lo cual requiere la exposición de un grado cero del aparecer. Es decir, para que la lógica del aparecer sea consistente, es necesaria una marcación trascendental de la no aparición.

Asimismo, la evaluación del grado de identidad o diferencia entre dos entes tiene sentido en cuanto existe un mínimo. Si es posible encontrar un grado de identidad “grande” (una identidad) ello conlleva que ese grado también puede ser “menos grande” o nulo (identidad cero). De todo esto, Badiou concluye que existe en todo mundo una medida trascendental del no-apareciente-en-ese-mundo, esto es, un mínimum (una suerte de cero) en el orden de las evaluaciones del aparecer (LM: 145).

Sin embargo, referirse a la “evaluación de un aparecer” es inexacto. Badiou realiza la importante aclaración de que los valores trascendentales nunca miden valores de identidad en sí, sino que son siempre relacionales: es únicamente a través de una evaluación de identidad mínima con otro ente del mismo mundo que puede pronunciarse el no apareciente.

No tiene ningún sentido transformar el juicio “Tal ente no está ahí” en juicio de ser. No hay ser del no-ser-ahí. Lo que puedo decir de tal ente, en cuanto a su localización […], es que su identidad con tal o cual ente de esa situación o de ese mundo es mínima, es decir, según el trascendental de ese mundo es nula. El aparecer, que es la testificación local, o mundana, de un ente, es de parte a parte lógico, o sea relacional. Resulta de ello que el no-apareciente depende de un grado nulo de relación, y nunca de un no-ser puro y simple (LM: 146).

La pregunta es, entonces, cómo puede ser evaluada la intensidad de la parte común a dos entes que coaparecen en un mundo. La respuesta se vincula a lo que Badiou llama la operación de conjunción, de la cual discierne tres modos. En la primera clase de conjunción denominada inclusión, uno de los entes conlleva o “porta” la identidad apareciente del otro. El segundo caso es denominado intercalación, en la cual la conjunción de los dos entes es medida por la referencia a la intensidad de aparición de un tercero. Por último, en el caso de una disyunción, la intensidad de aparición de lo que es común a los dos aparecientes puede ser nula, es decir, indexada con un valor cero por el trascendental del mundo donde coaparecen.

En realidad, Badiou señala que la operación de conjunción es más compleja dado que depende de una red relacional, de la lógica de un mundo singular. En consecuencia, el valor de aparición de un ente no depende de sí mismo, sino de una suerte de inventario sintético de sus diferencias con todos los otros entes que habitan ese mundo. En suma, el filósofo francés sostiene que “la estabilidad lógica de un mundo despliega redes identitarias (o diferenciales) conjuntas, siendo las conjunciones mismas desplegadas desde el valor mínimo (disyunción) hasta valores máximos (inclusión), pasando por la gama […] de los valores intermedios (intercalación)” (LM: 151). Por lo tanto, en el aparecer se admiten terceras posibilidades, es decir, funciona con una lógica “intuicionista” que no obedece al principio del tercero excluido.

Asimismo, se debe explicar que el valor nulo de una conjunción (la disyunción) no logra quebrar la estabilidad regional de un mundo, ni constituye la apertura de otro porque existe un valor sintético que subsume a todos los grados de aparecer de los entes que coaparecen en ese fragmento de mundo. Badiou denomina envoltura de una región de un mundo al ente cuyo grado diferencial de aparecer tiene un valor sintético apropiado para dicha región (LM: 152). Se trata de un elemento cuya intensidad de aparición envuelve o expresa la apariencia global de la región que corresponde.

En definitiva, la Gran Lógica establece que toda relación lógica en el aparecer se deriva de estas tres operaciones fundamentales del trascendental: el mínimum, la conjunción y la envoltura. Una de esas operaciones derivadas es la de dependencia, la cual establece conexiones entre los aparecientes de un mismo mundo y alude, de ese modo, a la causalidad física o a la implicación lógica. Cuando un ente A depende fuertemente de otro B, esto significa que se puede conjuntar con A casi todo el mundo sin superar el valor de B. En consecuencia, lo que vale para A, vale para el ente B, dado que éste es más envolvente (LM: 157).

Por otro lado, cuando Badiou se ocupa del aparecer de la negación, su punto de partida es considerarlo una categoría relativa a la mundaneidad del ente que también es derivada a partir de las tres operaciones fundamentales ya mencionadas. Es decir, la negación no aparece en el sentido fuerte o “clásico”, sino que se la concibe a través de lo que llama el reverso lógico de un apareciente: “[se denomina] reverso del grado de aparición de un ente-ahí en un mundo a la envoltura de la región del mundo constituida por todos los entes-ahí cuya conjunción con el primero toma el valor cero” (LM: 158)[8]. Este reverso forma parte del mismo mundo, pero entre ellos no hay nada en común (la conjunción de sus grados de intensidad es nula).

Asimismo, en función de que en la estructura del trascendental ya se estableció la existencia (axiomática) de un mínimum y la existencia (derivada) del reverso de un grado trascendental cualquiera, se puede deducir la existencia inmanente de un máximum. Esta medida suprema constituye, según Badiou, un principio de estabilidad de un mundo en tanto su grado marca allí un tope para la aparición y cuyo reverso es el mínimum, un ente del mismo mundo cuya conjunción con aquél es nula y, por ende, es el “inapareciente” de ese mundo (LM: 163). Por último, Badiou señala que, a pesar de asemejarse a una negación, el reverso en sentido estricto no tiene todas las propiedades de la negación clásica. Particularmente, en la lógica de aparecer el reverso del reverso puede tener un grado superior o igual a ese mismo grado, es decir, en ella la doble negación no es siempre igual a la afirmación (LM: 194).

En relación con este tema de los tipos de lógicas en las que se enmarca la lógica de los mundos, al final de la primera parte de la Gran Lógica se establece que la lógica de los mundos, es decir, la coherencia del aparecer en general, no se reduce a lo lingüístico, sino a la inversa. Esto implica que cuando la concepción de la lógica más usual, la lógica lingüística o gramatical, opera en un mundo, ella es totalmente reductible a las operaciones trascendentales (pre-lingüísticas) de la lógica mayor. Badiou denomina mundos clásicos a aquellos que poseen un trascendental que opera con las reglas de la lógica clásica de raíz aristotélica: el principio de no contradicción, la regla del tercero excluido y la ley de la doble negación como equivalente a la afirmación (LM: 211).

Un ejemplo de un mundo clásico es la ontología o teoría de lo múltiple puro que Badiou expuso en EE. Una muestra de esto es que un conjunto se identifica por su extensionalidad, es decir, según los “elementos” que posee, lo cual significa que en el trascendental del mundo “clásico” de la ontología un elemento sólo puede pertenecer (indexación máxima) o no pertenecer (mínimo) a un conjunto, es decir, rige una lógica binaria que excluye terceras posibilidades. Sin embargo, el aporte de LM es mostrar que también existen mundos no clásicos que operan con reglas diferentes, pero no dejan de estructurar el aparecer de una manera consistente.

La lógica del objeto sin sujeto

En el desarrollo de la analítica del ser-ahí en LM, Badiou también propone un nuevo concepto de objeto. Se verá más adelante que el pensamiento del objeto, a pesar de que no parece vincularse con el de los “no-objetos” que serían las verdades y las formas subjetivas, es esencial para abordar la dimensión objetiva de éstas: el cuerpo.

Un objeto es definible básicamente como la unidad del aparecer en un mundo o lo que hace identificable un ser-ahí (LM: 221). Al igual que el concepto de trascendental, la concepción badiouana de objeto no requiere de ningún sujeto, de modo que se opone a aquellos autores de la tradición filosófica como Descartes, Hume y Kant que supusieron una correlación inmediata entre sujeto y objeto. El desafío asumido por Badiou es demostrar que un objeto es el ser-ahí de un ente determinado en su ser sin recurrir a ninguna clase de experiencia. Esto lo diferencia de la filosofía kantiana que suponía que la experiencia interna del sujeto se correspondía con una experiencia externa de los objetos independientes de él.

En efecto, si bien Kant y Badiou coinciden en que el objeto es lo que se cuenta por uno en el aparecer, en el caso del primero, el objeto es resultado de una operación sintética de la conciencia. Por eso, Badiou interpreta que en el concepto kantiano de objeto se cristalizan las ambigüedades entre lo empírico y lo trascendental del filósofo prusiano, esto es, entre algo “objetivo” que es recibido y unos operadores “subjetivos” universales que estructuran eso que es dado desordenadamente. Mientras que Kant consideraba imposible que el pensamiento pueda acceder al “en sí” de los objetos (su dimensión nouménica), Badiou en LM afirma que el pensamiento sintetiza el ser y su ser ahí, y el objeto designa este punto en que fenómeno y noúmeno son indistinguibles: “Todo objeto es el ser ahí del ser de un ente” (LM: 272).

El objeto, como localización de un múltiple determinado en el mundo, debe vincularse de alguna forma con los elementos del múltiple del cual él es objetivación. Demostrarlo supone realizar un análisis de los componentes del objeto hasta el punto en que esto se suture con el análisis del múltiple en sus elementos. Es decir, hay que identificar la forma mínima, llamada atómica, de los componentes y hallar la intersección inteligible entre un “átomo de aparecer” y un “átomo de ser” (LM: 223). Se trata entonces, para Badiou, de un requisito materialista que supone una articulación entre la lógica del aparecer y la ontología de lo múltiple ya que, su tesis es que ningún mundo puede desrealizar complemente la ontología.

En un primer momento, en el recorrido para arribar a la conceptualización del objeto, Badiou define los conceptos “pre-objetivos” de fenómeno y de existencia. En efecto, un múltiple, al objetivarse, se expone a la lógica del aparecer, por lo cual el punto de partida de este estudio es explicar la indexación trascendental de los entes múltiples. Como ya se mencionó, Badiou denomina función de aparecer a lo que le atribuye una medida a la identidad de aparición de dos entes en un mundo determinado. En este marco, un fenómeno es definido como el dato de los grados de identidad que miden la relación de aparición de un ente cualquiera con los demás entes que coaparecen en el mismo mundo (LM: 229). No posee entonces ninguna clase de relación con una conciencia[9].

Por su parte, la existencia es considerada por Badiou como una categoría del aparecer y no del ser, pues sólo se puede existir en relación con un mundo. Es decir, la existencia es un concepto topológico porque ser-ahí implica ser en el mundo (tal como sostuvo Heidegger), pero con la importante diferencia respecto de la corriente fenomenológica de que para Badiou la existencia no es un atributo exclusivo del ser humano y, por ello, la aborda desde una perspectiva antihumanista, sin hacer referencia a una conciencia, experiencia o realidad humana (SM: 52).

En LM, la existencia de un ente X que aparece en un mundo es definida como el grado trascendental asignado a la identidad de X consigo mismo, una asignación siempre contingente dentro de un mundo. Asimismo, como toda asignación de un grado, la existencia se despliega entre mínimo y un máximo. Existir absolutamente es aparecer con el grado más elevado, mientras que inexistir equivale a tomar en el trascendental el valor mínimo (lo cual significa que su existencia está desenganchada de su ser). Además, la existencia puede graduarse entre estos extremos y adoptar un valor intermedio, es decir, ella opera con una lógica “intuicionista”. Otra propiedad fundamental de la existencia es reglar la diferencia ya que, “en un mundo dado, un ente no puede aparecer más idéntico a otro que lo que lo es a sí mismo” (LM: 238)[10].

Lo esencial para retener aquí es que la existencia es un concepto lógico (y no ontológico como el ser), un dato trascendental de un mundo específico que no hace Uno del aparecer, es decir, la existencia precede al objeto y lo constituye. El pensamiento de la objetividad o de lo Uno en el aparecer requiere de otro paso. En esa línea, Badiou sostiene que en la lógica hay un punto de detención en la descomposición analítica de los entes aparecientes, un umbral atómico del aparecer del mundo que se designa como un átomo de aparecer. Esta unidad mínima del aparecer en ese mundo refleja la unicidad del aparecer en cuanto es posible que dos múltiples distintos sean elementos del mismo componente atómico.

Asimismo, Badiou afirma que el átomo de aparecer está dictaminado por un elemento (en el sentido ontológico) del múltiple que aparece en el mundo. Esto se expresa en el “postulado del materialismo”, según el cual “todo átomo de aparecer es real”, es decir, está prescripto por su composición ontológica actual (se subraya actual por su oposición a la filosofía de Deleuze que otorga una primacía a lo virtual) (LM: 248). Se establece así la conexión onto-lógica que ancla a la lógica del aparecer en la ontología de lo múltiple, puesto que el componente más pequeño del ser-ahí está prescripto siempre por un elemento real del múltiple que aparece.

Una vez teorizado esto, Badiou arriba finalmente a su definición de objeto: “(U)n objeto es el dato conjunto de una pareja conceptual (un múltiple y una indexación trascendental) y de una prescripción materialista sobre lo Uno (todo átomo es real)” (LM: 249). Por lo tanto, el objeto para Badiou no es un dato sustancial, ya que la indexación o función varía según los mundos, pero tampoco es un dato puramente ficcional, pues en última instancia está prescrito por un elemento real de lo que aparece. El objeto es, en suma, un concepto onto-lógico (ontológico y lógico), soportado por una multiplicidad y con un valor de aparecer.

(E)l objeto es, por cierto, una figura de lo Uno en el aparecer, pero sus últimos componentes, las unidades indescomponibles de su aparición en un mundo, están bajo la ley de su composición elemental y, por ende, de la ontología de lo múltiple (LM: 355).

Este “postulado materialista” autoriza a que el múltiple pueda ser pensado no sólo según su ser, sino también en su objetivación, cuando ha devenido el ser de un objeto, lo cual abre la puerta a pensar que le sucede al múltiple desde que ha estado ahí, en un mundo[11]. Badiou teoriza esta tema en lo que llama una lógica atómica que estudia las relaciones entre los elementos (ser) de un objeto (aparecer) y desde una perspectiva topológica que considera los grados del trascendental como operadores de localización de los entes (que por cuestiones de extensión no se abordará aquí), cuyo eje es la idea de que hay una “retroacción” del ser sobre el aparecer: “el hecho de tener que existir (o aparecer) afecta retroactivamente al ser de una consistencia nueva, distinta de su propia diseminación múltiple” (LM: 334).

Las relaciones entre los objetos de un mundo

El concepto de objeto, recién abordado, expresa una conjunción onto-lógica que para Badiou agota la dialéctica del ser y de la existencia (entre la multiplicidad extensiva o matemática y de la multiplicidad intensiva o lógica). Por consiguiente, para comprender cabalmente el concepto de “mundo” resta pensar la coexistencia en un mismo mundo de una variedad de objetos y qué es una relación entre ellos (LM: 334). Así concluye la exposición de la Gran Lógica o la lógica de los mundos que estudian las leyes transcendentales del ser ahí.

Por un lado, la fenomenología objetiva puede identificar un mundo (por ejemplo, el mundo de la galaxia conocida como Vía Láctea) a partir de dos criterios: hay determinaciones o rasgos intrínsecos y hay redes de relaciones entre sus entes. Sin embargo, dado que esta doble determinación se corresponde con la del ser-ahí en general; para Badiou la identificación de un mundo requiere un paso más. Para conocer qué es un mundo hay que conocer qué es una relación entre objetos, lo cual implica plantear en qué marco operatorio se sitúa la enumeración ontológica de los múltiples que aparecen y, luego, qué es estrictamente una relación entre los objetos o aparecientes de un mismo mundo.

En cuanto a la extensión operatoria, la primera propiedad fundamental de un mundo identificada por Badiou es que un mundo inmanentiza la diseminación ontológica de lo que lo compone, puesto que los elementos que componen un ente-múltiple que aparece, son también elementos de ese mundo. Esto implica que no hay ninguna clase de materia elemental “por debajo” o pre-mundana (LM: 341). La segunda propiedad es que un mundo inmanentiza toda totalización local de las partes de lo que lo compone, pues los subconjuntos constitutivos de un ente también forman parte de ese mundo. De ello, se deduce que un mundo tampoco tiene un “por encima” heterogéneo que gobierne su inteligibilidad. En suma, desde la perspectiva de las operaciones ontológicas, en un mundo no hay sub-sistencia, ni tampoco nada que lo trascienda: “Ni materia (por debajo), ni principio (por encima), un mundo absorbe todas las multiplicidades de las que es inteligible que le son interiores” (LM: 342).

De estas dos propiedades, se desprende necesariamente que, si bien todo mundo es ontológicamente infinito en cuanto a su extensión, esta infinitud permanece “inaccesible” para las operaciones ontológicas, dado que –como ya se indicó– ellas son inmanentes al mundo[12]. Badiou lo explica en términos hegelianos: “como el Absoluto hegeliano, un mundo es el despliegue de su propia infinidad. Pero, contrariamente a ese Absoluto, no puede construir en interioridad la medida, o el concepto, del infinito que él es” (LM: 344). La inaccesibilidad implica que un mundo está “clausurado” para las operaciones nombradas que despliegan el ser-en-tanto-ser, ellas le son inmanentes y no permiten salir de él. Pero, además de estar afectado por esta clausura inaccesible, Badiou señala que cada mundo no es representable desde su interior como un Todo, es decir, no es totalizable para lo que existe en él. Por eso, paradójicamente, un mundo con una clausura operatoria, “permanece globalmente abierto para toda figura local de su composición inmanente” (LM: 344).

Por otra parte, respecto de la cuestión de la relación entre objetos, Badiou afirma que ella está subordinada a la intensidad trascendental de los aparecientes en cuestión. Es decir, la vinculación de un objeto con otros está normada por esos mismos objetos:

(U)na relación es un vínculo entre multiplicidades objetivas –una función– que no crea nada, ni en el orden de las intensidades de existencia ni en el orden de las localizaciones atómicas, que no esté prescrito ya por el régimen de aparición de esas multiplicidades (por los objetos de los que ellas son el soporte de ser) (LM: 335).

La definición de una relación entre dos objetos de un mundo es una función de un elemento a otro que conserva intensidades de existencia y localizaciones, de modo que la diferencia entre esos términos se mantiene o disminuye. Esta definición negativa es ejemplificada por Badiou mediante el caso del surgimiento de un conflicto territorial entre un grupo indígena y la administración estatal en lo que llama el “mundo de Quebec”, lo cual sólo tiene como consecuencia hacer aparecer existencias objetivas que ya estaban ahí, incluso cuando alguna de esas existencias antes estaba minimizada. Asimismo, el despliegue de esta relación puede volver legibles diferenciaciones internas, pero no puede crearlas (LM: 346). Por eso, en sentido estricto, una relación no produce un cambio real o acontecimiento en un mundo ya que, en lugar de modificar las evaluaciones trascendentales, las supone; mientras que un acontecimiento será definido justamente como aquella aparición que cambia el dispositivo trascendental de un mundo.

Por otro lado, así como se estableció que un mundo esta ontológicamente afectado de una clausura inaccesible en lo que respecta a sus entes-múltiples, también en el orden lógico de las relaciones entre objetos hay un principio de clausura similar. Esto es lo que Badiou define como la “Completitud lógica de un mundo”, un principio que expresa que toda relación está universalmente “expuesta” o establecida en un mundo: es decir, cada relación es siempre “visible” (metafóricamente hablando) o conocida desde un punto (un objeto) privilegiado de su mundo, y este punto es a la vez visible como tal desde otro objeto desde el cual la mencionada relación es igualmente visible (todo ello sin salir de ese mundo singular). De este modo, la relación “expuesta” implica la composición de un diagrama triangular, siempre conmutativo.

Por último, la segunda tesis fundamental del materialismo de Badiou sostiene que este principio de cerramiento que contiene la completitud lógica del aparecer es una consecuencia de su clausura ontológica (esta es una tesis “global” que complementa el carácter “local” de la primera tesis materialista) (LM: 355). Es decir, la infinidad inaccesible de un mundo es una característica ontológica que acarrea la universalidad de las relaciones (una característica lógica)[13]. La Gran Lógica badiouana arriba así a su definición de un mundo: “es un sistema de objetos y de relaciones que hace aparecer una colección infinita de múltiples puros y les prescribe una composición atómica que las relaciones dejan invariante” (LM: 377)

El inexistente, muestra de la contingencia

El pensamiento de un múltiple es separable e indiferente respecto del sitio mundano en el que aparece. Por eso, Badiou escribe que todo objeto considerado en su ser “está inevitablemente marcado por el hecho de que, al aparecer en ese mundo, también hubiera podido no aparecer en él, y porque, además, es posible que aparezca en otro” (LM: 357). Es decir, hay una especie de “reserva de ser” que indica el carácter contingente del apareciente.

Esta contingencia de la composición objetiva de cada mundo, dada la racionalidad de la lógica de los mundos, debe leerse en sus objetos mismos. Por eso, Badiou señala que en la existencia que mide el grado de aparición de un objeto, siempre se traza un punto real de inexistencia que muestra que el objeto entero podría no haber existido. En línea con el postulado del materialismo, todo objeto dispone entre sus elementos un inexistente propio, “un elemento del múltiple subyacente cuyo valor de existencia es mínimo” (LM: 358).

El ejemplo de Badiou indica que los indígenas son el inexistente propio del objeto “capacidad cívica de los quebequenses” en el mundo Quebec de hasta mediados del siglo XX. De ello también se puede deducir que en dicha secuencia temporal el grado de identidad de los indígenas con otros elementos de la población quebequense es nulo. Es decir, si ellos inexisten en cuanto a los derechos (porque no poseen ninguno), no poseen ninguna identidad con quienes sí los poseen (LM: 359). La misma inexistencia se puede señalar respecto de la capacidad política de los obreros en la Francia previa a la Comuna de París (caso que será analizado más adelante) o en el caso de los inmigrantes “sin papeles” en Francia, ya analizado en esta Tesis a partir de Théorie du sujet. En este sentido, vale rescatar el señalamiento de Bruno Bosteels (2010a: 30) de que el inexistente en LM actúa como el elemento que concentra la concentra la historicidad (es decir, lo no-estructural) de un mundo o situación, de modo similar a la función que cumplía el concepto de “sitio de acontecimiento” en EE.

La inexistencia dispone a un ente en el mundo de una manera singular. En el caso ejemplificado por Badiou, el indígena designa un ente que es parte del mundo Quebec pero que, a la vez, según la estricta lógica del aparecer no está ahí absolutamente, ya que no se le reconoce plenamente su ciudadanía (así como el inmigrante que trabaja y vive en Francia, pero que no es reconocido como ciudadano francés). De ese modo, el inexistente constituye un índice de la contingencia del orden del aparecer de su mundo.

(D)ado un objeto en un mundo, existe un único elemento de ese objeto que inexiste en ese mundo […]. Él verifica, en la esfera de la apariencia, la contingencia del ser-ahí. En ese sentido, su ser (ontológico) tiene al no-ser (lógico) como ser-ahí (LM: 360).

En efecto, el inexistente es un ente cuyo ser está “testificado” en un mundo, pero cuya existencia no lo está (difiere entonces del conjunto vacío teorizado en EE, que es el ser como no-ser y que no es local, sino global). La inexistencia trata de un ser que aparece como “nada”, no tiene entidad; él es en el sentido ontológico, pero no es en sentido lógico.

Por último, vale mencionar aquí que la concepción del inexistente de LM es criticada por la Bosteels (2010a: 32) porque entiende que concibe un cambio que se reduce al reconocimiento de la existencia negada en la estructura previamente, de modo que su “potencialidad” para transformarla es limitada en comparación con la visión topológica de este concepto que alude al desborde de lo estructural (tal como hizo el propio Badiou en TS y se desarrolló en esta Tesis). En respuesta a esta crítica, vale subrayar que la aparición del inexistente será teorizada en LM como la huella del acontecimiento[14] que es el punto inicial de un proceso de invención más amplio, por lo cual al examinar la “potencialidad” de lo inexistente se debe considerar su papel insustituible en la conformación del cuerpo post-acontecimiental que actuará como “guardián” de sus consecuencias (ilimitadas) y cuyo desenvolvimiento mundano –materializando una verdad– será incluso pensado nuevamente con perspectiva topológica.


  1. Desanti, J-T. (1990). “Quelques Remarques à propos de l’ontologie intrinsèque d’Alain Badiou” en Les temps modernes, n° 526.
  2. Este libro también puede encuadrarse en una especie de trilogía, ya que el mismo año Badiou publicó Petit manuel d’inesthétique y Abrégé de métapolitique que abordan, respectivamente, el arte y la política (los tres en conjunto conformarían Conditions 2).
  3. Así lo señala el propio Badiou en su Prefacio a la edición en inglés del libro: Briefings on Existence: A Short Treatise on Transitory Ontology, SUNY Press, New York, 2006, p. xii.
  4. Si bien al igual que EE, las secciones de LM incluyen tanto el trabajo con las fórmulas de la lógica matemática como el diálogo con el pensamiento occidental, vale notar que el método de exposición de la estructura del aparecer es menos impersonal en cuanto Badiou se permite expresar sus reglas y matices a través de ejemplos extraídos de mundos muy diversos. Se trata de lo que él llama una “fenomenología objetiva” que intenta desplegar una descripción del aparecer que neutralice la dimensión intencional subjetiva.
  5. “(E)n la lógica (trascendental) del aparecer de los entes, lo que se expone al pensamiento es un juego reglado del ser-múltiple “en si” y de su diferenciación variable. La lógica, en tanto consistencia del aparecer, organiza la unidad aleatoria, bajo la ley del mundo, de la matemática de lo múltiple y la evaluación local de sus relaciones tanto consigo mismo como con los otros” (LM: 170).
  6. A favor de este “realismo” y en contra de la tradición filosófica del “correlacionismo” –que sostiene que no se puede aprehender ninguna objetividad independientemente de una subjetividad–, Quentin Meillassoux señala la existencia de enunciados científicos acerca de eventos anteriores a la aparición de la especie humana y, por ende, a toda forma humana de relación con el mundo. Meillassoux, Q., Después de la finitud. Ensayo sobre la necesidad de la contingencia, Buenos Aires: Caja Negra Editora, 2015.
  7. Vale subrayar que, si bien pueden ser asimilados para relacionar ambas obras, la idea de situación de EE hace referencia a una multiplicidad y no puede ser identificada con el concepto de mundo que remite a una mayor complejidad, ya que cada mundo posee su trascendental que teje relaciones entre sus elementos y en él hay (como se verá) infinitas multiplicidades inaccesibles.
  8. El reverso consiste entonces en una negación que aparece dentro de una lógica “intuicionista”: “Intuitionist negation, such that it functions at the level of the transcendental of worlds is already an ‘active’ negation in the following sense: there are a large number of intermediaries between the proposition p and the proposition non-p. Negation is thus a limit case for the whole series of possibilities, which goes from identity to complete alterity passing through all the degrees of qualitative differences” (Badiou, E2011a: 91-92).
  9. Badiou añade que en esta fenomenología objetiva se suspende toda referencia a una conciencia intencional, por lo tanto, en la inmediatez de la indexación trascendental no hay ninguna alusión a un orden temporal de recorrido para la descripción de los fenómenos; la referencia al tiempo sólo sirve para la didáctica de esas descripciones (LM: 230).
  10. La teoría formal de la existencia abarca también la cuestión de la muerte que, en LM, se considera una categoría del aparecer y no del ser. Morir consiste en el pasaje de cierto grado de existencia del ente a otro mínimo o nulo en lo relativo al mundo, resultado de una causa exterior. Badiou se opone así al vitalismo y a la fenomenología para las cuales existir significa estar en el movimiento de una superexistencia original, ya sea la vida, en el primer caso; ya sea la conciencia intencional, en el segundo, pero que “tanto en un caso como en el otro, la garantía de lo Uno como potencia constituyente (…) es la mortalidad, o la finitud, de lo múltiple como configuración constituida (…). Y, tanto en un caso como en el otro, detrás de los bastidores, un Dios laicizado, o sublimado, opera: maquinista superexistente del ser. Se lo puede llamar Vida, o –como Spinoza– Sustancia, o Conciencia. Siempre es de Él de lo que se trata, de ese infinito subyacente cuya escritura terrestre es la muerte”. Por eso, Badiou propone: “Pensar la existencia sin finitud. Tal es el imperativo liberador, que disocia al existir de su atadura al significante último de la sumisión, que es la muerte” (LM: 302).
  11. Para Badiou, esta cuestión resulta clave en tanto el acontecimiento va a ser entendido como una reorganización del trascendental y hay que saber en qué medida esta transformación de la objetividad afecta a los entes del mundo hasta en su ser.
  12. Desde el punto de vista abstracto y exterior de la formalización matemática, Badiou señala que la magnitud o cardinalidad de un mundo sólo es medible, en términos de Cantor, por un cardinal infinito inaccesible (LM: 368). Aunque un mundo pueda estar compuesto por un número considerable de entes-múltiples, la potencia numérica o cardinalidad del mundo no es alcanzable a partir los entes disponibles en él.
  13. En este punto, Badiou agrega que la historia de un mundo es la de la aparición de los objetos y sus relaciones, la historia de la exposición universal de toda relación entre sus coaparecientes. “La historia de un mundo no es más que la figura temporal de la universalidad de su exposición. Es, en última instancia, el despliegue de su superabundancia de ser” (LM: 357).
  14. Como se verá, en LM la noción de inexistente es fundamental porque Badiou la liga al estudio del acontecimiento. En efecto, uno de los rasgos del acontecimiento consiste en el “relevo” [relève] de esa nada, es decir, el vuelco de la intensidad nula del inexistente hacia una intensidad máxima (LM: 380). Vale recordar que relève es la traducción derrideana de la Aufhebung de Hegel.


Deja un comentario